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Originating from the ideas of renormalization group
in statistical field theories [1], the study of the scale-free
property in network theories has undergone an impressive
development over the past twenty years [2, 3]. It is note-
worthy that the term “scale-free” [2] was first dubbed to
denote the unique property that a power-law distribution
of, e.g., degree k, f(k) ∝ k−α is invariant (free) under the
continuous scale transformation k → k + ϵk. However,
since a pure power-law degree distribution (DD) would
not be normalizable in the domain k ∈ [0,∞), the DD
cannot truly be power law but requires an ultraviolet
(UV) cutoff, in terms of either a kmin (the minimum de-
gree each node can have) or some other nontrivial correc-
tions around small k. The DD regains its scale invariance
only asymptotically in the infrared (IR) limit k → ∞.

Therefore, a finite-size network can only be approxi-
mately “scale-free” [4]. This has put great difficulty in
how we can test if real-world finite-size complex networks
are “scale-free” in abundance, a remarkable claim that,
albeit supported by many empirical observations [5], re-
mains controversial in recent literature [6]. Without prior
knowledge of the UV cutoff, it is unknown how large a
typical degree k must be, that we should consider as al-
ready entering the power-law regime where rigorous sta-
tistical analysis can be employed. An oversimplified so-
lution to this is to statistically test the full domain of k,
ignoring possible UV cutoffs, resulting in that less than
one third of real-world networks have a statistically sig-
nificant power-law DD [7]. Yet, when another metric
is investigated, namely the degree–degree distance η [7],
defined by

η = exp |ln ki − ln kj | (1)

for every link i ↔ j connecting two nodes i and j, it turns
out that real-world networks almost universally have a
statistically significant power-law degree–degree distance
distribution (DDDD) [7]. Much interest has since been
drawn to the characteristics of η, bringing its prevalence
to broader network science topics [8], especially network
closeness [9] and network assortativity [10].

Despite the potentials, the finding of power-law DDDD
raises a question: is there any theoretical relevance be-
tween the power laws (if any) of DD and DDDD? It
appears that asymptotically, a power law of DDDD
g(η) ∝ η−β is nothing but a delegate of the power law

of DD of the same network, given that an equality β =
α− 1 [7] has been derived for both the Barabási–Albert
(BA) model [2] and a special power-law-distributed fit-
ness model [7]. There seems no reason to investigate the
power law of DDDD for its own theoretical purpose.

Nevertheless, here we show that the power law of
DDDD is more than a delegate. Our main result is that
the set of networks with an asymptotic power-law DD is
a proper subset of those with an asymptotic power-law
DDDD. This immediately indicates that there are net-
works whose DD is not power law, but DDDD is, differ-
ing not only in statistical significance but also in their
asymptotic limits. This also implies that our current
understanding of the scale-free property of networks in
terms of only the power law of DD is incomplete. Indeed,
given the broader scope of power-law DDDD, we propose
that it would be more appropraite and general to denote
“scale-free networks” as having a power-law distribution
for any of its metrics, not the degree only. Such, the
scale-free property need not manifest in all metrics, thus
better identified and distinguished not by apparent power
laws but by the underlying network mechanisms, such as
preferential attachment [2] or quenched fitness [11]. In
particular, we will show that either of these two funda-
mental mechanisms can generate networks as concrete ex-
amples for our purpose—representing scale-free networks
without a power-law DD.

Results.—We (abusively) phrase our main result as

D2|power-law ⊂ D4|power-law (2)

and derive it in two steps, claiming its (i) inclusion and,
more interestingly, its (ii) strict inequality as follows:

(i) D2|power-law ⊆ D4|power-law, i.e., every network with
a power-law DD also has a power-law DDDD.

(ii)
∣∣D2|power-law

∣∣ <
∣∣D4|power-law

∣∣, i.e. there are net-
works that do not have a power-law DD but exhibit a
power-law DDDD. We will consider two network models
of general interest:

Preferential attachment of internal links only.—As our
first model, this “no-growth” model differs from the BA
model [2] in that the number of nodes N of the network
is fixed as a constant, and only internal links are added
to the initially empty network during its evolution. At
each time step t, two nodes i and j are randomly and
independently chosen, resulting in a link drawn between
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FIG. 1: Distributions of (a-b) k and (c-d) η of the “no-
growth” model, generated by preferential attachment of
internal links only (with attachment probability ∝ k +
a small constant b). Simulation results (circle): average
of 102 runs on N = 104 nodes and T = 106 links.
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FIG. 2: Distributions of (a) k and (b) η of the Facebook
network, fitted by analytical results (solid line) of the
“no-growth” model with b = 0.4092.

i and j. The probability of choosing such two nodes
is ∝ (ki + b) (kj + b), i.e., preferentially proportional to
each node’s current degree k plus a small constant b.
After T time steps, the network acquires T links.

We derive the analytical results for both DD and
DDDD of the no-growth model. In contrast to DD, we
find that the DDDD exhibits a strong power law in the
small b regime. The analytical result matches the simu-
lation result [Fig. 1(c-d)], with the power-law exponent
of DDDD equal to 2 + b as expected.
It is worth noting that as b → 0, we rediscover the

classic scaling ∼ η−2 for the DDDD of the BA model [7].
This is evidence that the scale-free property of the BA
model indeed originates from the preferential attachment
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FIG. 3:Distributions of (a-b) k and (c-d) η of the “strong-
coupling” model, a uniform-distributed fitness model (fit-
ness ω ∈ [0, ωmax = 1]) where two nodes are linked if their
fitness sum is larger than a threshold z. Simulation re-
sults (circle): average of 102 runs on N = 104 nodes.

mechanism but not from network growth, a discrimina-
tion that cannot be revealed by comparing DD only [12].

Facebook is the world’s largest social networking plat-
form. Figure 2 shows the DD and DDDD of Facebook.
We find that the DD of Facebook is not a power-law dis-
tribution, but DDDD is. Notably, both DD and DDDD
are also in good agreement with the analytical results of
the no-growth model, suggesting that the model is more
than a toy model but of strong practical significance as
well.

Fitness with threshold.—The second model of inter-
est is defined by assigning a random fitness ω that fol-
lows a fitness distribution ρ(ω) to each node of the net-
work [13]. For every two nodes i and j, let a link be
drawn with probability σ(ωi, ωj) that depends only on
the fitness of the nodes, not their degrees [11]. By choos-
ing σ(ωi, ωj) = θ(ωi+ωj−z), where θ(x) is the Heaviside
step function, a strong coupling of fitness is introduced,
such that a link will be deterministically drawn if and
only if the sum of the fitnesses of the two nodes is larger
than a threshold z. In particular, here we consider a
uniform distribution ρ(ω) for ω ∈ [0, ωmax] and assume
that ωmax ≤ z ≤ 2ωmax. We find that the annealed av-
erage DD is simply given by f(k) ∼ N−1 [Fig. 3(a-b)]
following the calculation in Ref. [14]. For DDDD, we de-
rive g(η) ∼ η−3 for large η, a strong power law that is
independent of z [Fig. 3(c-d)].

Discussion.—We also observe that Eq. (2) establishes
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an inclusive order between the power laws of DD and
DDDD. This raises the question of whether we can find
another more inclusive metric beyond DDDD. It would
be interesting if a hierarchy between all such metrics
could be established, especially for scale-free networks,
that offers new insights on distinguishing the origins of
scale-free properties.
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